Arkansas Harmful Algal Bloom (HABs) Workgroup

December 5, 2017 Beautiful Buffalo River Action Committee meeting

> 1st Place Photo by Diana L. http://neefusa.org/ algalbloomcontest

Harmful vs. Nuisance Algal Bloom

- <u>Harmful</u> algal blooms are a major environmental problem in all 50 states. Cyanobacterial harmful algal blooms (cyanoHABs) in inland waters severally impact human health, aquatic ecosystems, and the economy.
- <u>Nuisance</u> algal blooms or algae outbreaks may be used to describe macroalgae, which are large visible free floating, or microalgae which require a microscope to see but in mass are highly visible.

Nuisance

cyanoHAB

http://www.outdooralabama.com/lyngbya

Lyngbya

What we know

- HABs are becoming more frequent and predictable, especially in nutrient enriched water bodies.
- 2.5 million acres (nationally) of lakes, reservoirs, and ponds have poor water quality due to nitrogen and phosphorus pollution.
- Some algal blooms can produce toxic compounds (cyanotoxins) at levels of concern for human health and the environment.

Ellen Gilinsky, USEPA, Protecting America's Water from HAB's, NALMS' LakeLine, Summer 2015

What we know, cont.

- When HABs are present near drinking water intakes, cyanotoxins can enter the drinking water utility's supply, putting the local population at risk.
- Toxins from HABs are also harmful and can cause death to pets and livestock
- HABs also can pose a risk for swimming and other recreational activities on or in the water.

Ellen Gilinsky, USEPA, Protecting America's Water from HAB's, NALMS' LakeLine, Summer 2015

What we know, cont.

- EPA estimates between 30 and 48 million people use drinking water from lakes and reservoirs that may be vulnerable to cyanotoxin contamination.
- HAB occurrences have diverse and far reaching economic impacts, not just drinking water, but also on tourism and recreation, real estate values, commercial fishing, and recreational businesses.
- Nutrient enrichment and the resulting HABs are one of our most widespread, costly, and challenging environmental problems today.

Ellen Gilinsky, USEPA, Protecting America's Water from HAB's, NALMS' LakeLine, Summer 2015

Table 2. Common cyanobacterial toxins, toxicity (based on intraperitoneal mouse assays), and common effects of exposure.

[Most toxin groups have several variants with a range of toxicities. Although known chronic effects are listed, the chronic effects of exposure to cyanotoxins currently (2008) are not well understood. LD_{50} , lethal dose required to kill half of the members of a tested population; $\mu g/kg$, micrograms per kilogram of body weight; -, no data available; >, greater than]

Class	Toxin	Toxicity (LD ₅₀)	Acute effects	Chronic effects
Neurotoxins	Anatoxins	20 – 250 µg/kg	Seizure, paralysis, respiratory failure, death	unknown
	Saxitoxins ¹	10 µg/kg	Tingling or numbness in extremities, paralysis, respiratory failure, death	unknown
	β -N-methylamino-L-alanine (BMAA)	-	-	neurodegenerative disease
Hepatotoxins	Microcystins	25 – > 1,000 μg/kg	Acute hepatoenteritis, shortness of breath, interhepatic hemorrhage hemorrhagic shock, heart failure, death	chronic liver injury, tumor promoter
	Cylindrospermopsins	200 – 2,100 µg/kg	Acute hepatoenteritis, renal, lung, heart, spleen, thymus, and adrenal damage, death	potential carcinogen, mutagen
	Nodularins ²	50 μg/kg	Similar to microcystins	tumor promoter
Dermatoxins	Lyngbyatoxins	300 µg/kg	Severe dermatitis, gastroenteritis	tumor promoter
	Aplysiatoxins	300 µg/kg	Severe dermatitis, gastroenteritis	tumor promoter
	Lipopolysaccharides	-	Dermatitis, gastroenteritis	unknown

¹Also known as paralytic shellfish poisons (PSPs).

²To date, nodularins have only been detected in brackish waters.

Sources: Chorus and Bartram (1999), Falconer and Humpage (2006), and Stewart and others (2006).

Arkansas HAB Workgroup

• Goals

- Develop communications between state agencies and other organizations
- Develop a monitoring plan for HABs and cyanotoxins
- Develop a response plan for drinking water and recreational HAB occurrences
- Develop signage and other communication methods to notify public

Drinking Water vs. Recreation

Drinking Water

- ADH, CAW, & BWD taking the lead, with AWWA and USEPA
- November 2017, USEPA released, Incident Action Checklist for HAB's and water utilities

Toxin	10-day Health Advisory		
	Bottle-fed infants and pre-school children	School-age children and adults	
Microcystins	0.3 μg/L	1.6 μg/L	
Cylindrospermopsin	0.7 μg/L	3 μg/L	

Recreation

- ADH *E. coli* swim beach monitoring
- No agency responsible for cyanotoxins and cyanotoxin closures?
- AHABWG is currently developing a
 - HAB monitoring and
 - recreational HAB response plan

USEPA Suggested Actions for Preparing and Responding to Blooms in Recreational waters

<u>epa.gov/nutrient-policy-data/monitoring-and-responding-</u> <u>cyanobacteria-and-cyanotoxins-recreational-waters</u>

- Prioritize recreational waterbodies based on risk
- Develop a monitoring plan
- Develop a response plan
- Develop signage and other communication methods to notify public

#1 - Identify health advisory and closure levels, and#2 - take specific actions on waterways exceeding levels.

Phytoplankton counts > 50,000 cells/ml

Future Endeavors

- Working together with partners to develop a volunteer, citizen-science, water-quality monitoring pilot project in a local reservoir in central Arkansas.
- You can get a lot done with crowd-sourcing.
- Hopes are to develop a statewide volunteer lake & reservoir water-quality monitoring program.
- Volunteer monitoring guidance document in the works.

Reporting Tool: Lake Observer app

https://www.lakeobserver.org/

●○○○○ Verizon LTE	13:56 🕑 🕈 🖲 82% 💼	
K Back Seco	chi Depth Submit	
Secchi depth*	ft m	
	in	
Water depth*	ft m	
No. of Concession, Name	in	
Platform	Boat/Canoe	
Disk resting on bottom?		
Disk type	Disk type Black and White	
Viewscope used	I? Yes No	
Comment		
Location	34.799316, -92.347122	
Date	2017-07-17	
Time	13:56:30	
	0 Notifications	

••••• Verizon LTE	14:28	🖭 🕈 🍯 76% 🔳
K Back C	loud Cover	Submit
		1.000
Cloud cover*		
		2
(Lin	
		1.1.1.1.1.1
		and the second second
Comment		
Location	34.799271	, -92.347099
Date	2017	7-07-17
Time	14:	28:56
* indicates a required field		
		100000000000000000000000000000000000000
		0 Notifications

●●●○○ Verizon	LTE	14:12	• 1	O 80% 🗩 ·
〈 Measurements Wind Submit				
-		Ν		
	N I	Directior	ר E	\checkmark
		Лλ.		
1-	1	S		
	1			1
		V.		
Speed*		С	alm	
and/or				mph m/s
Commont				
Comment				-
Location	34.799244, -92.347076			
Date	2017-07-17			
Time	14:12:33			
			••	
			0 Nc	otifications

Reporting Platforms and Communications

https://www.adeq.state.ar.us/complaints/forms/nuisance_algae_complaint.aspx

Online Harmful Algae Bloom Complaint Reporting Form

* Asterisk indicates item is mandatory; all others are optional

Select County (or Unknown)

 \mathbf{v}

Owner/Location Information

Property Owner (if known):

* County (if known):

* Location/Driving Directions: Provide the exact address, including street, city, and zip and/or location/driving directions.

Description of Problem Instructions

 Public Access:

 • Yes

 • No

 • No

 • Size of Bloom:
 • Description of Problem (in Detail)

 Select Size (or Unknown)
 Unknown
 Larger than a football field
 Between a football field and a compact car
 Less than a compact car

ttach Photos:	Browse
p to six .jpg, .gif, peg, or .tif photos.	Browse
hotos must be 10	
1B or under per	Browse
le.	

2017 Arkansas Fishing Guidebook

New Developments

• 2016 -- Spatial and temporal variation in microcystin occurrence in wadeable streams in the southeastern United States

http://www.sciencedirect.com/science/article/pii/S0043135417306462

 2017 -- Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs http://onlinelibrary.wiley.com/doi/10.1002/etc.3391/full

